

LA-UR-21-28621

Approved for public release; distribution is unlimited.

Title: Spray Drying of High Explosives

Author(s): Tisdale, Jeremy Tyler

Hill, Larry Glenn Duque, Amanda Lynn

Intended for: Report

Issued: 2021-08-30

Spray Drying of High Explosives

Jeremy Tisdale, Larry Hill, Amanda Duque Q-5: HE Science & Technology

08/25/21

Presentation Outline

- 1. What is spray drying?
- 2. How can spray drying be utilized for high explosives processing?
- 3. Literature overview.
- 4. Examples of current spray drying research done in Q-5.
- 5. Future plans and outlook for spray drying high explosives.

Spray drying offers versatile options for HE production and formulation.

- Spray drying is an industrial technique where a solution is sprayed through a hot drying medium, resulting in dry, fine powders.
- Benefits for HF include:
 - Simple, one-step process for producing uniform nano/micro-HE particles and formulations
 - Control/tuning of particle size and morphology (sub-micron, up to ~50 μm)

Allows for access to HE microstructures that we do not currently have by any other

production means

On-going objectives focus on understanding the parameter space for control over the final product size and morphology.

- Range of neat HEs and formulations
- Temperature gradient, gas and feed flow rates, yields of material, feedstock concentration
- 4 different spray nozzles:
 - 0.7, 1.4, and 2.0 mm opening atomization nozzles
 - ultrasonic nozzle
- Solvent choice → dictates needed outlet temperature
 - Outlet temperature based on boiling point of solvent for full drying of material

How can spray drying be utilized in high explosives processing?

Spray Drying

Feed

HE + binder dissolved in solution

Product

Neat HE with unique particle size/morphology

Well-mixed composites or co-crystals

Particle size of product may be tuned by processing parameters

Spray Coating

Feed

Slurry of undissolved HE + dissolved binder

Product

Micro-encapsulated HE with binder

Particle size/morphology of the starting material is retained in the product (FEM-HMX, UF TATB, etc.)

Reported Literature Spray Drying Efforts

- Considering the small amount of groups (only a few world-wide)
 using this capability, a significant amount of research has been
 reported on a variety of spray dried HE materials, composites and
 formulations
- One-step spray drying method for HE/Binder composites
 - HMX/Estane, HMX/Viton, HMX/PVAc, HMX/PVOH, RDX/PVAc, RDX/Estane CL-20/EPDM
- Multi-HE composites and co-crystallization
 - HMX/Nitrocellulose, HMX/TATB, HMX/TNT, CL-20/HMX, CL-20/DNDAP
 - Lack of single crystal crystallography data, questions still remain for proven successful co-crystallization
- Novel amorphous energetics
 - CL-20/HMX/PVAc

Current Goals for Spray Drying HE

- One-step processing of PBX nanocomposites
- Fully dissolved solutions of HE/Binder can be spray dried to achieve size and morphology controlled HE composites
 - HMX/Estane, RDX/PVAc, etc.
- One-step co-crystallization for useful HE composites
 - For example, spray drying CL-20/HMX co-crystals showed a drastically reduced sensitivity as compared to pure CL-20 or pure HMX. An, C., et al., Journal of Nanomaterials 2017(2017).
- Spray drying of neat HE materials for size reduction and morphology control

Current Materials Undergoing Research Efforts

- Neat PETN (LA-UR-21-23797)
- Neat TNT
- Neat RDX
- HMX and PBX-9501
- PFBA (formulated as PBX-9501) and other mocks to understand processing conditions

Spray Drying PETN

- Spray drying PETN has provided a novel size/morphology for this material
- Size reduction is a known method to decrease sensitivity
- Spray drying used as a non-mechanical processing technique for sensitive explosives

Starting Material: PETN XTX Grade

Spray Dried: PETN (Neat)

Physical Characterization of Spray Dried PETN

Physical Characterization of Spray Dried PETN

 Powder XRD shows that the powder PETN remains in the thermally stable, tetragonal, PETN-I polymorph

Small-scale sensitivity of PETN

Sample	Impact Testing		Friction Testing		ESD Testing	DSC Results	
	50% Height (cm)	σ (cm)		σ (N)	*TIL/**Screen (J)	Melt T (°C)	Onset T (°C)
PETN XTX Grade PETN L298	11.1	1.3	134.7	17.4	*0.0625	140.6	165.4
Standard	11.8	1.7	60.1	3.6	*0.125	140.8	165.8
PETN Spray Dried	18.1	3.0	201.5	58.8	*0.125	140.8	165.8

- DSC results are used to ensure no undesirable chemical properties are changing such as the onset of decomposition
- Small-scale sensitivity tests showed a reduction in impact and friction sensitivity!
- Further detailed information: LA-UR-21-23797

The presence of an additive or binder will have a significant effect on the product morphology

Spray Dried: PETN (Neat)

Spray Dried: PETN w/ 5 wt% Kel-F

Spray Drying RDX

Class 5 RDX Standard Starting Material

Spray dried with 0.7 mm atomizing nozzle Spray dried with Ultrasonic Nozzle

Spray Drying RDX – Spray Dried Surfaces

Spray dried with 0.7 mm atomizing nozzle Spray dried with Ultrasonic Nozzle

Small-scale sensitivity of RDX

Sample	Impact Tes	ting	Friction Testing		ESD Testing	
	50% Height (cm)	σ (cm)	50% Load (N)	σ (N)	*TIL/**Screen (J)	
RDX Class 5	30.2	1.0	>360	NA	*0.125	
RDX – Spray Dried US	25.5	1.9	>360	NA	*0.0625	
RDX – Spray Dried 0.7	22.8	2.7	296.9	78.2	*0.125	

- Unlike the PETN, the spray dried RDX showed increased sensitivity to impact and friction as we decreased the PSD
- The increase in sensitivity is most likely due to the morphological changes
- Work is continuing to understand the cause of this trend

Spray Drying RDX

Neat RDX as a test case system to understand PSD tuning with processing conditions

Spray Drying HMX/Estane

- Initial spray drying experiments with 95/5% HMX/Estane
- These experiments will look at microencapsulation as well as spray drying full dissolution of components
- Plan to start experimenting with added nitroplasticizer

On-going and Future Work in Spray Drying HE

- 1. Continue to develop understanding of processing conditions to have accurate, fine-tuned control of particle size distributions and morphologies.
- 2. Continue to investigate neat explosives with novel morphologies/microstructures and understand the impact and connections with physical, chemical, and energetic properties.
 - This includes PETN, HMX, RDX, TNT, etc.
- 3. Begin experimentation with microencapsulation of PBX systems to explore coating uniformity, and material stability, as well as alternate binders viable with spray drying
- 4. Begin studying processing of multi-component HE systems to explore potential co-crystallization processes and novel energetic formulations

Thank you!

List of Reports:

Characterization of Spray Dried PETN Powders (LA-UR-21-23797) (report) Production of Desensitized, Ultrafine PETN Powder (waiting for submission) Investigation of Neat Spray Dried RDX Powder Morphologies (In preparation) Effects of Spray Drying on TNT Polymorphism (In preparation)

